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Normal mode calculation of A-type zeolite was carried out with the potential
energy functions obtained from the constraint method. Mass-weighted car-
tesian coordinates and the pseudo-lattice method were used. The assignments
of IR absorption bands were made with the calculated normal modes, by
using the calculated absorption intensities of the modes and the degrees of
contribution of the internal coordinates to the modes. The force constants of
internal coordinate motions within the framework were also calculated and
are compared with the empirical values.
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1. Introduction

The normal mode calculation of a covalently bonding crystal with large unit cell
contains many difficulties although several methods are available [1-5]. Recently,
a calculation of the normal modes of zeolite was carried out in order to illuminate
the vibrational motions of zeolite framework [6-8]. Since the vibrational spectra
of zeolites are very widely used in investigating the physical and chemical
properties of zeolites, the calculated vibrational modes may be useful in interpre-
tating the zeolite behaviour. Various methods of calculating the normal modes,
based on the Bloch theorem, are available [1-5], but we have adopted the
pseudo-lattice method [7] proposed by No and Jhon, which can easily be applied
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to the zeolites [9-11]. We note that although the total potential energy of the
zeolite system can be described by a set of force-field-type potential functions,
this potential set can’t predict the equilibrium geometry of the zeolite. The force
constants used in the force-field potential were obtained from empirical rules
[12,13] or experimental data [14, 15]. Recently, a physically realistic potential
energy function was obtained using the constraint method, and this has been
used to investigate the static [16-19] and dynamic properties [20] of the zeolite
framework.

In the assignment of IR absorption bands with the theoretically obtained normal
modes, many criteria are needed because there are several candidates for each
absorption band. These may be the vibration frequencies, selection rules for the
infrared absorption, the characteristic spectrum of the rings, and the changes in
the vibrational frequencies of the coupled modes with varying silicon-to-
aluminium ratios [9]. It is also possible to calculate the absorption intensity of
fundamental transition of each normal mode from the net atomic charges and
the displacement vectors of the atoms in the model. Since the absorption bands
have been characterized by experimentalists [21] in terms of internal coordinate
motions such as T-O stretching and T-O-T or O-T-0O bending, the classification
of normal modes into the internal coordinate motions is necessary for a more
accurate assignment of the bands. Therefore, in this study, the normal modes are
projected onto an orthogonal internal coordinate set and are then classified into
internal coordinate motions. The identification of the IR absorption bands will
be made with these.

2. Calculation
2.1. Model (Si,ALO,s)

For normal mode calculations on complicated molecules it is impossible to choose
an orthogonal internal coordinate set which is symmetric with respect to all the
symmetry elements of the model;, mass-weighted cartesian coordinate system
have therefore been used in this calculation [22-24]. This means that the internal
coordinate set needed to describe the vibrational motion is different from that
needed for the potential energy representation; consequently the additivity of
the potential energy is assumed, and the internal coordinates used for the potential
energy description contain many redundant coordinates. The Si;Al,0,, double
4-ring (D4R) was used as a model, with the geometry taken from the x-ray
crystallographic structure of dehydrated NaA-type zeolite [25]. This geometry,
described in cartesian coordinates, is listed in Table 1. For the representation of
an infinite framework with a finite model (D4R), the pseudo-lattice method was
used in this calculation. Details of the application of the pseudo-lattice method
to D4R is described in our previous papers [8, 9].

2.2. Potential energy functions

The potential energy functions suitable for the zeolite framework were obtained
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Table 1. The geometry of the D4R model (in A)

X Y z
Al 0.0 -2.2203 1.5433
Si —2.2876 0.0 1.5963
o) 0.0 —2.7912 —0.0828
0(2) 0.0 —3.5829 2.5883
0(3) ~1.4402 ~1.3209 1.9271

by the constraint method [16].

k N 3
Y Y Y 8/3aABS(0V°/a X)) =f (1)
i=1i=1j=1

where V= V(a, ay,........ L, xS xY 0 x3Y), @ is ith potential para-

meter, and x’ and x° represent the jth coordinate of Ith atom when displaced
and at equilibrium respectively. V is the stabilization energy of the crystal, which
is expressed as

V: Vel+ Vpol+ VB+ VNB+ Vbend+ ‘/tm“ (2)

The average net atomic charge of Na atoms, dy., in A-type zeolite was obtained
as 0.581 by No et al. [16]; net atomic charges of the atoms in the framework, §;,
were calculated using Sanderson’s electronegativity equalization conditions
[26, 27] with Huheey’s [28] atomic electronegativity set, a; and b;.

Z 8= —dna (33)
i#=Na
a;+bd; = a;+ b;5; (3b)
Vel:Z z 8m8n/rmn (3C)
m n>m

where r,,, represents the distance between the mth and nth atoms. For the good
convergence of the electric fields, that is, the Madelung sums, the summation
was carried out for all the (SiAl0,)Na units within cubic crystal (R = 2a,) [16-19].

Vo= 12 3 a, [( Y §{nn) ] (4)

n¥Em

where «,, is the atomic polarizability of the nth atom and &, is the j-directional
electric field at the position of atom n due to atom m.

V=Y Y De,,,(E 2% m ™ 0 — o= (=7 100)) (5)

m n>m

where De,,,, &m,, and 7o, are the Morse potential parameters for atomic pair m,
n. These atomic pairs are Si-O and Al-O bonds.

VNB=48mn[(0-mn/rmn)12_(a-mn/rmn)G] (6)
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where &, and o,,, are Lennard-Jones (6-12) potential parameters. This non-
binding potential was used for O--O and O--Na pairs.

Voena =2 2 (k1(6, = 05)° —k;(6, = 67)°) (7)
where k', k", and 6° are bending potential parameters. The second term of the
right side is introduced to describe the anharmonicity of angle bending motions.

For the torsional potential function for the T-O-T-O coordinate, a harmonic
potential was used:

Vtorzz ktor(¢m _¢0)2 (8)

The potential parameters are summarized in Table 2.

The force constants are obtained in a cartesian coordinate system as
K" = (82V/8q?"q}“)'=§ll (8°Vi/aqT"q}) =§ K" 9)

where mn denote the atoms m and n, i, j denote cartesian coordinates, and !
represents all the types of the potentials in V. Since the potential functions are
described by internal coordinates, the calculation of force constants includes the
coordinate transformations.

2.3. Calculation of fundamental IR absorption intensities

The absorption intensity was calculated from the dipole moment changes during
vibration [29]. If the net atomic charges of the atoms in the model are assumed

Table 2. The refined potential parameters with &y, =

0.581
Al-0, Si-O %o 1.770
Bonding . 1.588
a0 1.368
asi o 1413
Dey o 114.8
Deg;_¢, 185.0
0-0, O-Na To. o 2.645
Non-bonding FONa 2.477
£o-0 0.227
£0--Na 0.247
T-O-T, 02 A0 115.5
0-Al-0, 0% s o 109.3
0-Si-0 0% ot 141.5
Bending ko_aro 0.910
kb sio 0.432
Kr ot 0.076
kb ai-o 0.089
kb sio 0.043
Kot 0.009

k, k'inmdyne/ A, k"inmdyne/AZ? r®in A, 6°in degrees,
a in 1/A, De in kcal/mol, £ in kcal/mol, & in A



Normal mode calculation of A-type zeolite 311

to be constant during each vibration, the relative intensities of the ith normal
mode could be expressed as follows [8]:

xy,z [ N 2
I =974.86[ ) <2 Dk(i,j)) ] (10)

Kk \j=i
where Dy (i, j) represents the dipole moment change due to the jth atom in the
k direction of the ith normal mode. The dipole moment change matrix is

D=R-% (11)

where R represents the normal coordinates described with respect to a cartesian
basis set (not mass-weighted), and & is the diagonal matrix of the net atomic
charges. Details are given in [8].

2.4. Calculation of internal coordinate contributions to a normal mode

A normal mode described by cartesian coordinate displacements, Q;, can be
transformed to the changes of an orthogonal internal coordinate set:

Q=Y a; S (12)

where {S;} is a set of internal coordinate displacement and the number of S;
being 3N ~6 or 3N depending on the method used. Each S; can be expressed
in terms of the 3N cartesian coordinates. The potential energy functions are
described by the changes in internal coordinates, {g;}, and generally {g,} doesn’t
form an orthogonal set; in our model many of the coordinates in {g,} are
redundant. As a result, we use {g,} to describe the total potential energy, while
vibrational motion is described by either {S;}, or the cartesian coordinates {X,}.
The {q;} used to describe all contributions to equation 2 except for V,, are 32
stretching, 60 bending, 48 non-bonding, and 72 torsional coordinates. Since both
the absorption bands and the empirically obtained force constants, kj, are
classified in terms of the coordinates {S;}, the conversion of normal modes and
force constants described by { X} into those in terms of the {S;} coordinates may
be useful. For the small displacements from the equilibrium position, the total
potential energy expressed in Eq. (2) can be described in {g,} as

V=% V@) + Ve (13)
1=1

where V; is the change in potential energy due to displacement of the /th internal
coordinate, and m is the total number of internal coordinates in Eq. (1). Using
the harmonic oscillator approximation, the total potential energy in cartesian
coordinate system is:

3N
2V=Y kIX2+2V., (14)
n=1
while in terms of the normal coordinates it is

V=Y kCQI 42V, (15)
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where V. is the potential energy of equilibrium geometry and corresponds to
the minimum point in the potential energy surface, V°, of the A-type zeolite. The

total potential energy described by Eq. (15) can be expressed as
2V= 7Y aikiSi+2V, (16)
i

if

Since additivity is assumed in the total energy description, the potential energy
contribution of the jth internal coordinate in S; to the ith normal mode can be
expressed as a sum of each potential contribution:

2Vy(8) =201/ 98) S, Pk +2 Ve (17)

Denoting the projection of S; on ¢, (3¢:/35;)by g, this becomes

2sz(‘gj)=2 gJZISJZk?+2Vref:kJSSJZ+2‘/ref (18)
!
so that
ki =X giik{ (19)

and the total potential is

VZZ ‘/t+ ‘/refzézz asz gllk;]sxz—‘- Vref
i i 1
:%ZZaIZJV](S])-‘_Vref (20)
i

The distribution of potential energy to S; in ith normal mode is thus a3 V;.
The a; can be obtained by projecting the ith normal mode onto Sj,

§k' éi=z aijgj'gk (21)
J

which leads to n inhomogeneous linear equations for each normal mode; these
may be solved by the Gauss elimination method. In this study, both a; and g;
are obtained within the restrictions of the D4R pseudo-lattice model.

The number of vibrational degrees of freedom depends on the method used in
normal mode calculations. It is 3N in the calculation based on the Bloch theorem
and is 3N —6 in the cluster model.

3. Results and discussion

In Table 3, the vibrational frequencies, symmetric species and absorption
intensities obtained from normal mode calculations are listed and are compared
with the experimentally obtained absorption bands. In the assignment of the
absorption bands to calculated normal modes, several criteria were used. Although
many criteria were used in the assignment, the results seem to be still qualitative
and semi-empirical. Since the vibrational spectrum of zeolite is sensitive to the
framework structure and silicon/aluminum ratio, the absorption bands can be
characterized by a combination of the internal coordinate motions: this is because
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Table 3. The vibrational frequencies, symmetric species and absorption
intensities obtained from normal mode calculations are compared with the
experimentally obtained absorption bands

Infrared Vibrational Symmetry Absolute
spectra frequencies species intensity
1095 B2(IR,R) 1779
1091 A1(R)
1090(w) 1086 E(IR,R) 0.02
1028(w) 1028 E(IR,R) 1121
1027 AL(R)
1000 B2(IR,R) 0.01
991 A2
985 B1(R)
955(s) 980 E(IR,R) 536
903 E(IR,R) 773
899 B2(IR, R) 129
828 B1(R)
812 Al(R)
811 A2
797 E(IR,R) 39
790 B2(IR,R) 4
789 A1(R)
740-750 (ow, sh) 759 E(IR, R) 209
737 B2(IR, R) 0.0009
732 E(IR,R) 17
727 B(2)(IR, R) 225
712 A1(R)
688 E(IR,R) 40
660(w) 680 B2(IR, R) 875
650 A1(R)
641 E(IR,R) 719
573 B1(R)
571 A2
550(ms) 567 B2(IR, R) 540
520 E(IR,R) 10
476 B1(R)
475 E(IR,R) 9
464(m) 456 B2(IR, R) 77
455 AL(R)
452 A2
445 E(IR,R) 146
378(ms)
360 A2
307 B1(R)
288 E(IR,R) 0.07
258 B1(R)
260(w) 258 E(IR,R) 44
245 B2(IR, R) 7
244 A2
229 E(IR,R) 3

Vibrational frequencies and intensities are in cm™ and km/mol, respectively

313
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one model calculation, specified by a certain structure and Si/Al ratio, can be
described by one set of internal coordinates or of force constants. Therefore, the
expansion coeflicients, a; (the projection of ith normal coordinate to jth internal
coordinate), calculated from Eq. (21) are necessary for more reliable assignments.

The degree of contribution of the internal coordinates (A,,,) is defined by
Aimzzal?k/Z a?j, (22)
k J

where Y, is the sum over the same kinds of internal coordinates described by
m. m represents one of the Si-O(1), Si-0(2), Si-0(3), Al-0(1), Al-0(2), Al-0O(3),
Si-0-Al, 0-Al-0, O-Si-0, or Si-O-Al-0O internal coordinates. Values for A,
are summarized in Table 4. For the normalization of the expansion, Y; aj is
introduced as the denominator; because the normal coordinates described with
respect to cartesian coordinates can’t be completely expanded by the orthogonal
internal coordinate set, the denominators take values between 0.9 and 1.0.

The modes higher than 800 cm ™' may be classified as stretching modes, although
angle bending and torsional contributions are not negligible. In this region, due
to symmetric restrictions, the degrees of the contributions of the same kind of
T-O bonds, for example Si-O(1) and Al-O(1), or Si-O(2) and Al-O(2), to each
normal mode are similar. Therefore, the first two IR active modes are T-O(1),
the next two modes are T-O(2), and the following two modes are T-O(3) stretching
modes. Below 550 cm™", the stretching contributions to normal modes are rela-
tively small. In this region, both the T-O-T and the T-O-T-O contributions are
relatively large compared with the modes higher than 550 cm™'. However, over
the whole frequency region, the contributions of any internal coordinate does
not vanish, since the force constants of all the internal coordinate motions in the
framework are of the same order, between 2 ~7 mydne/A, as shown in Table 5.
Hence the coupling of internal coordinates is inevitable.

In order to represent the potential energy with the orthogonal internal coordinates
in Eq. (18) or (20), the internal coordinate force constants, k°, are calculated
from Eq. (19) and are listed in Table 5. Here, the force constants are quite
different from those obtained using empirical rules [12, 13] or experimental data
[14,15]. Since the internal coordinate motions in the framework are restricted
both by the potential of the coordinate itself and by those formed with the
environment atoms, the force constant k° is larger than k? for the same internal
coordinate. In the normal coordinates of free molecules, the couplings between
different kinds of internal coordinates are generally relatively small; however in
a crystal, as in the zeolite framework, the force constants for bending and torsional
coordinates are very large compared with those of free molecules and are compar-
able to those of stretching coordinates, and hence lead to large couplings of the
internal coordinates. As shown in Table 6, all the atomic motions, even including
T-O-T bending, have large force constants in the framework. The force constants
of O---0 coordinates are also very large, between 2.8 to 4.4 mydne/A, implying
that the motions of oxygen atoms are restricted by the other neighbouring
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Table 5. The internal coordinate force constants (in mdyne/A)

Internal coordinate k? k! Used in Empirically
Blackwell’s obtained
calculation in mullite

karom 5.939 3.707 3.292°

ka0 6.667 3.800 3.183® 475°

karoe) 6.027 3.456 3.024°

ksi-o) 6.472 4.983 4975

ksi-o@ 7.09 5.177 5.417% 5.2°

ksiio) 6.249 4.800 5.0532

karo@)-si 1.564 -0.090 0.084°

karo)-si 1.634 —0.080

koe)-al-oe) 3.571 0.670 0.825°

ko@)-ar-o@) 3.478 2.083 0.836°

ko)-a-oa) 3.613 1.150 0.833°
ko@y-a-om) 3.483 1.123 0.845°
ko)-sicom) 2.504 0.051 0.389°
kog)-si-o@ 2.434 0.731 0.393°
ko@)-si-o) 2.539 2.821 0.391°

Ko@) -siiom 2.430 2.692 0.395°

kroro 2.269 0.042° 0.042°

Koq)---0) 4.438 0.043

ko1)-—-o0) 2.834 0.024

ko)-—-o0) 4.308 0.050

ko@)-—o) 2.770 0.024

2 Calculated from BLSF-BR, k25, [6]
b Obtained empirically from the IR spectra of Mullite, k& 1o and k¥ [15]
¢ Obtained from [14]

non-bonding oxygen atoms. Since the force constants corresponding to T-O-T,
0-AI-0, 0-Si-0, and O-T-O-T motions do not differ much in magnitude, most
of the normal vibrations lower than 800 cm™' are combinational motions of these
coordinates. Therefore, with few exceptions, the vibrational motion in this region
can’t be characterized by an internal coordinate motion. For this reason, the
normal modes were classified into the characteristic and coupled modes in our
previous paper. The stretching force constants of Al-O bonds, calculated with
the potential energy function, ki, o, are larger than those obtained from BLSF-
BR, BLSF field based on Badger’s rule, karo; however k%_os are smaller than
k&8,s. Except for Al-O bonds the force constants obtained from potential energy
functions do not so much deviate from those obtained from empirically or
experimentally obtained force constants. Since the A-type zeolite framework is
composed of alternating Al-O and Si-O bonds, and both Si and Al are tetrahe-
drally coordinated by oxygen atoms, the bond character of the Al-O bonds is
quite different from that of alumina.

If the force constant set k* is used, where {S} forms an orthogonal coordinate
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set, then the coordinates used for the description of vibrational motion and those
used for the total energy expression in Egs. (12) and (18) or (20), are the same
internal coordinate set. Among 212 ¢ coordinates, 16 Al-O, 16 Si-O, 12 T-O-T,
48 O-T-0, 72 T-O-T-0, and 48 O---0 internal coordinates, in the pseudo-lattice
method, 3N —3 (69 in our model) orthogonal internal coordinates can be selected.
In the selection of {S} from {g}, the symmetric restrictions of the model must be
considered.

Using the A,,s, the IR absorption band were assigned to the internal coordinates,
and the results are summarized in Table 6 together with the previous assignments.

The potential energy functions used in this study may be physically meaningful
because the crystal structures can be obtained with these potential functions
[16-19] and the calculated vibrational frequencies arising from them agree well
with experimental data. The non-bonding potential parameters of O--O and
O--Na are very important for the determination of the crystal structure and the
dynamic properties, i.e. the diffusion [20] of Na ion in the framework and the
vibrational motions of framework [8].

Conclusion

For the normal mode analysis, the force constants obtained from the potential
energy function, k7, must be converted to the k™ in Eq. (14) or to k* in Eq. (16).
Using the additivity of the potential energy function, the k*’s can be obtained
from Eq. (19). The vibrational motions, {Q}, must be described by {S} or {X}.
The expansion of {Q} in terms of {X} can easily be converted into the expansion
of {S} using projection operators and solving linear equations. Since the empirical
force constants were selected to ensure that the theoretical number of IR active
frequencies calculated with the force constants was compatible with the observed
spectrum, the force constant set could be either k? or k°. Hence, conversions
between k7 and k°, or k? and k¥, or k° and k™ may be useful.
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