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Normal mode calculation of A-type zeolite was carried out with the potential 
energy functions obtained from the constraint method. Mass-weighted car- 
tesian coordinates and the pseudo-lattice method were used. The assignments 
of IR absorption bands were made with the calculated normal modes, by 
using the calculated absorption intensities of the modes and the degrees of 
contribution of the internal coordinates to the modes. The force constants of 
internal coordinate motions within the framework were also calculated and 
are compared with the empirical values. 
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I. Introduction 

The normal mode calculation of a covalently bonding crystal with large unit cell 
contains many difficulties although several methods are available [1-5]. Recently, 
a calculation of the normal modes of zeolite was carried out in order to illuminate 
the vibrational motions of zeolite framework [6-8]. Since the vibrational spectra 
of zeolites are very widely used in investigating the physical and chemical 
properties of zeolites, the calculated vibrational modes may be useful in interpre- 
tating the zeolite behaviour. Various methods of calculating the normal modes, 
based on the Bloch theorem, are available [1-5], but we have adopted the 
pseudo-lattice method [7] proposed by No and Jhon, which can easily be applied 
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to the zeolites [9-11]. We note that although the total potential energy of the 
zeolite system can be described by a set of force-field-type potential functions, 
this potential set can't predict the equilibrium geometry of the zeolite. The force 
constants used in the force-field potential were obtained from empirical rules 
[12, 13] or experimental data [14, 15]. Recently, a physically realistic potential 
energy function was obtained using the constraint method, and this has been 
used to investigate the static [16-19] and dynamic properties [20] of  the zeolite 
framework. 

In the assignment of IR absorption bands with the theoretically obtained normal 
modes, many criteria are needed because there are several candidates for each 
absorption band. These may be the vibration frequencies, selection rules for the 
infrared absorption, the characteristic spectrum of the rings, and the changes in 
the vibrational frequencies of the coupled modes with varying silicon-to- 
aluminium ratios [9]. It is also possible to calculate the absorption intensity of 
fundamental transition of each normal mode from the net atomic charges and 
the displacement vectors of  the atoms in the model. Since the absorption bands 
have been characterized by experimentalists [21] in terms of internal coordinate 
motions such as T-O stretching and T - O - T  or O-T-O bending, the classification 
of normal modes into the internal coordinate motions is necessary for a more 
accurate assignment of  the bands. Therefore, in this study, the normal modes are 
projected onto an orthogonal internal coordinate set and are then classified into 
internal coordinate motions. The identification of the IR absorption bands will 
be made with these. 

2. Calculation 

2.1. Model (Si4A140,6) 

For normal mode calculations on complicated molecules it is impossible to choose 
an orthogonal internal coordinate set which is symmetric with respect to all the 
symmetry elements of the model; mass-weighted cartesian coordinate system 
have therefore been used in this calculation [22-24]. This means that the internal 
coordinate set needed to describe the vibrational motion is different from that 
needed for the potential energy representation; consequently the additivity of 
the potential energy is assumed, and the internal coordinates used for the potential 
energy description contain many redundant coordinates. The Si4A140~6 double 
4-ring (D4R) was used as a model, with the geometry taken from the x-ray 
crystallographic structure of dehydrated NaA-type zeolite [25]. This geometry, 
described in cartesian coordinates, is listed in Table 1. For the representation of 
an infinite framework with a finite model (D4R), the pseudo-lattice method was 
used in this calculation. Details of the application of the pseudo-lattice method 
to D4R is described in our previous papers [8, 9]. 

2.2. Potential energy functions 

The potential energy functions suitable for the zeolite framework were obtained 
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Table 1. The geometry of the D4R model (in A) 

X Y Z 

A1 0.0 -2.2203 1.5433 
Si -2.2876 0.0 1.5963 
O(1) 0.0 -2.7912 -0.0828 
0(2) 0.0 -3.5829 2.5883 
0(3) -1.4402 -1.3209 1.9271 

309 

by the constraint  method  [16]. 

k N 3 
Z 2 ~, O/Oa~ABS(OV~176 (1) 
i=1 /=1 j = l  

Ol 01 O N  where V ~  . . . . . . .  , k, X l , X z , . . . , x 3  ), a~ is ith potential  para- 
meter, and x t and x ~ represent the j th  coordinate  o f / t h  a tom when displaced 
and at equilibrium respectively. V is the stabilization energy of  the crystal, which 
is expressed as 

V = Vel q- Vpol-b VBq- VNB q- Vbend q- Vto r . (2)  

The average net a tomic charge of  Na  atoms, 3Na , in A-type zeolite was obtained 
as 0.581 by N o  et al. [16]; net a tomic charges of  the atoms in the framework,  6g, 
were calculated using Sanderson 's  electronegativity equalization condit ions 
[26, 27] with Huheey ' s  [28] atomic electronegativity set, ai and bi. 

8i = - -SNa (3a) 
i~Na 

a, + b,6~ = aj + bj6j (3b) 

V e l = Z  2 ~m~n/rmn (3C) 
m n>m 

where rmn represents the distance between the ruth and nth atoms. For  the good 
convergence of  the electric fields, that is, the Madelung sums, the summat ion  
was carried out for all the (SiAIO2)Na units within cubic crystal (R = 2a0) [16-19]. 

Vpol = - - 1 2  2 0 d n  ~Jmn (4)  
tl j tl m 

where a ,  is the atomic polarizabili ty of  the nth a tom and g~,  is the j -di rect ional  
electric field at the posit ion o f  a tom n due to a tom m. 

VB=• 2 Demn(E-2c%"(rm"-r~ (5) 
m n~m 

where De,,~, am., and o, rm~ are the Morse potential  parameters  for a tomic pair  m, 
n. These a tomic  pairs are Si-O and A1-O bonds.  

VNB = 4em,,[ ( O'mn/ rmn) 12 -- ( O'mn/ rmn) 6] (6) 
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where emn and o-,,n are Lennard-Jones (6-12) potential parameters. This non- 
binding potential was used for O - - O  and O - - N a  pairs. 

Vb~nd = � 8 9  (k' (O,  - 0~ : -  k~(O, - 0o) 3) (7) 
n 

where k', k", and 0 ~ are bending potential parameters. The second term of the 
right side is introduced to describe the anharmonicity of angle bending motions. 
For the torsional potential function for the T-O-T-O coordinate, a harmonic 
potential was used: 

Vtor "= Z ktor(q~m - ~0)  2 (8)  
m 

The potential parameters are summarized in Table 2. 

The force constants are obtained in a cartesian coordinate system as 

Ka =(02V/OqT'q~)=~ 2 . . . . .  ~" (0 Vi/Oq, q ; ) = E  K~; (l) (9) 
1 l 

where mn denote the atoms m and n, i, j denote cartesian coordinates, and 1 
represents all the types of  the potentials in V. Since the potential functions are 
described by internal coordinates, the calculation of force constants includes the 
coordinate transformations. 

2.3. Calculation of  fundamental  IR absorption intensities 

The absorption intensity was calculated from the dipole moment changes during 
vibration [29]. If the net atomic charges of the atoms in the model are assumed 

Table 2. The refined potential parameters with 6Na= 
0.581 

o, 1.770 AI-O, Si-O rAl_ O 
Bonding r~ 1.588 

O~AI_O 1.368 
~si-o 1.413 
DeAl_ o 114.8 
Desk_ o 185.0 

O-O, O-Na  ~ o 2.645 
Non-bonding ~ro__Na 2.477 

co__ o 0.227 
~O--Na 0.247 

T-O-T, 0 ~ 115.5 O - A I - O  

O-A1-O, 0 ~ 109.3 O - S i  0 

O-Si-O 0 ~ 141.5 T - O - T  

Bending k8 A]-O 0.910 
k' 0.432 O - S i  O 

k~r_o_'r 0.076 
kS_At_O 0,089 
k~) Si O 0.043 
k~_O_ T 0.009 

k, k' in mdyne/,~, k" in mdyne//~2, r o in A, 0 ~ in degrees, 
a in 1//~, De in kcal/mol, e in kcal/mol, o- in A 
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to be constant during each vibration, the relative intensities of the ith normal 
mode could be expressed as follows [8]: 

I~=974.86 ~ ~ Dk(i,j) (10) 
j = i  

where Dk(i,j) represents the dipole moment change due to the j th  atom in the 
k direction of the ith normal mode. The dipole moment change matrix is 

D = R . 8  (11) 

where R represents the normal coordinates described with respect to a cartesian 
basis set (not mass-weighted), and 8 is the diagonal matrix of the net atomic 
charges. Details are given in [8]. 

2.4. Calculation of internal coordinate contributions to a normal mode 

A normal mode described by cartesian coordinate displacements, Q~, can be 
transformed to the changes of an orthogonal internal coordinate set: 

Qi =Y~ a~. Sj (12) 
J 

where {Sj} is a set of internal coordinate displacement and the number of Sj 
being 3 N - 6  or 3N depending on the method used. Each Sj can be expressed 
in terms of the 3N cartesian coordinates. The potential energy functions are 
described by the changes in internal coordinates, {ql}, and generally {q~} doesn't 
form an orthogonal set; in our model many of the coordinates in {q~} are 
redundant. As a result, we use {q~} to describe the total potential energy, while 
vibrational motion is described by either {Sj}, or the cartesian coordinates {X,}. 
The {q~} used to describe all contributions to equation 2 except for Vel a r e  32 
stretching, 60 bending, 48 non-bonding, and 72 torsional coordinates. Since both 
the absorption bands and the empirically obtained force constants, k], are 
classified in terms of the coordinates {Sj}, the conversion of normal modes and 
force constants described by {X,} into those in terms of the {Sj} coordinates may 
be useful. For the small displacements from the equilibrium position, the total 
potential energy expressed in Eq. (2) can be described in {qt} as 

V= ~ V~(q,)+ Vref (13) 
z=l 

where V~ is the change in potential energy due to displacement of the lth internal 
coordinate, and m is the total number of internal coordinates in Eq. (1). Using 
the harmonic oscillator approximation, the total potential energy in cartesian 
coordinate system is: 

3/'4 

2V= Y, k'~X~+2K~f (14) 
n = l  

while in terms of the normal coordinates it is 

2 V = 2  k~OQ~+ZVref (15) 
i 
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where Vre f is the potential energy of equilibrium geometry and corresponds to 
the minimum point in the potential energy surface, V ~ of the A-type zeolite. The 
total potential energy described by Eq. (15) can be expressed as 

2 V = ~ Y ~  2 ~ 2 aok,S J + 2 Wre f (16) 
i j 

Since additivity is assumed in the total energy description, the potential energy 
contribution of the j th  internal coordinate in Sj to the ith normal mode can be 
expressed as a sum of each potential contribution: 

2 ~j(Sj) = Y.[(Oq,/OSj)Sj]2k q + 2 Vre f (17) 
I 

Denoting the projection of Sj on ql (OqJOSj)by gjt, this becomes 

2V,;(Sj)=E 2 2 q ~ &tSjk,  +2 Vrer = k~S 5 q-2Vre f 
1 

(18) 

so that 
2 q k~= ~. gjtk, (19) 

and the total potential is 

2 q 2+ V = ~  Vi+ Vref=�89 Ere  f 
i i j l 

:�89 E 4 b(sj) + Vref (2O) 
i j 

The distribution of potential energy to Sj in ith normal mode is thus 2 a ij Vj. 

The a~ can be obtained by projecting the ith normal mode onto Sj, 

Sk" (~i = Y, a ~ .  Sk (21) 
J 

which leads to n inhomogeneous linear equations for each normal mode; these 
may be solved by the Gauss elimination method. In this study, both au and &z 
are obtained within the restrictions of the D4R pseudo-lattice model. 

The number of vibrational degrees of freedom depends on the method used in 
normal mode calculations. It is 3N  in the calculation based on the Bloch theorem 
and is 3 N - 6  in the cluster model. 

3. Results and discussion 

In Table 3, the vibrational frequencies, symmetric species and absorption 
intensities obtained from normal mode calculations are listed and are compared 
with the experimentally obtained absorption bands. In the assignment of the 
absorption bands to calculated normal modes, several criteria were used. Although 
many criteria were used in the assignment, the results seem to be still qualitative 
and semi-empirical. Since the vibrational spectrum of zeolite is sensitive to the 
framework structure and silicon/aluminum ratio, the absorption bands can be 
characterized by a combination of the internal coordinate motions: this is because 
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Table 3. The vibrational frequencies, symmetric species and absorption 
intensities obtained from normal mode calculations are compared with the 
experimentally obtained absorption bands 

Infrared Vibrational Symmetry Absolute 
spectra frequencies species intensity 

1095 B2(IR, R) 1779 
1091 AI(R) 

1090(w) 1086 E(IR, R) 0.02 
1028(w) 1028 E(IR, R) 1121 

1027 AI(R) 
1000 B2(IR, R) 0.01 
991 A2 
985 BI(R) 

955(s) 980 E(IR, R) 536 
903 E(IR, R) 773 
899 B2(IR, R) 129 
828 BI(R) 
812 AI(R) 
811 A2 
797 E(IR, R) 39 
790 BZ(IR, R) 4 
789 AI(R) 

740-750 (vw, sh) 759 E(IR, R) 209 
737 B2(IR, R) 0.0009 
732 E(IR, R) 17 
727 B(2)(IR, R) 225 
712 AI(R) 
688 E(IR, R) 40 

660(w) 680 B2(IR, R) 875 
650 AI(R) 
641 E(IR, R) 719 
573 BI(R) 
571 A2 

550(ms) 567 B2(IR, R) 540 
520 E(IR, R) 10 
476 BI(R) 
475 E(IR,R) 9 

464(m) 456 B2(IR, R) 77 
455 AI(R) 
452 A2 
445 E(IR, R) 146 

378(ms) 

260(w) 

360 A2 
307 BI(R) 
288 E(IR, R) 0.07 
258 Ba(R) 
258 E(IR, R) 44 
245 B2(IR, R) 7 
244 A2 
229 E(IR, R) 3 

Vibrational frequencies and intensities are in cm -1 and km/mol, respectively 
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one model calculation, specified by a certain structure and Si/A1 ratio, can be 
described by one set of internal coordinates or of force constants. Therefore, the 
expansion coefficients, a U (the projection of ith normal coordinate to j th  internal 
coordinate), calculated from Eq. (21) are necessary for more reliable assignments. 

The degree of contribution of the internal coordinates (Aim) is defined by 

Ai,,=~a2/~gk au2, (22) 
z J  

where Y~k is the sum over the same kinds of internal coordinates described by 
m. m represents one of the Si-O(1), Si-O(2), Si-O(3), AI-O(1), A1-O(2), A1-O(3), 
Si-O-AI, O-A1-O, O-Si-O,  or Si-O-A1-O internal coordinates. Values for Aim 
are summarized in Table 4. For the normalization of the expansion, ~j a~ is 
introduced as the denominator; because the normal coordinates described with 
respect to cartesian coordinates can't be completely expanded by the orthogonal 
internal coordinate set, the denominators take values between 0.9 and 1.0. 

The modes higher than 800 cm -1 may be classified as stretching modes, although 
angle bending and torsional contributions are not negligible. In this region, due 
to symmetric restrictions, the degrees of the contributions of the same kind of 
T-O bonds, for example Si-O(1) and A1-O(1), or Si-O(2) and A1-O(2), to each 
normal mode are similar. Therefore, the first two IR active modes are T-O(1),  
the next two modes are T-O(2),  and the following two modes are T-O(3) stretching 
modes. Below 550 cm -1, the stretching contributions to normal modes are rela- 
tively small. In this region, both the T - O - T  and the T - O - T - O  contributions are 
relatively large compared with the modes higher than 550 cm -1. However, over 
the whole frequency region, the contributions of  any internal coordinate does 
not vanish, since the force constants of all the internal coordinate motions in the 
framework are of the same order, between 2 -  7 mydne/,~,  as shown in Table 5. 
Hence the coupling of internal coordinates is inevitable. 

In order to represent the potential energy with the orthogonal internal coordinates 
in Eq. (18) or (20), the internal coordinate force constants, k s, are calculated 
from Eq. (19) and are listed in Table 5. Here, the force constants are quite 
different from those obtained using empirical rules [12, 13] or experimental data 
[14, 15]. Since the internal coordinate motions in the framework are restricted 
both by the potential of the coordinate itself and by those formed with the 
environment atoms, the force constant k s is larger than k q for the same internal 
coordinate. In the normal coordinates of free molecules, the couplings between 
different kinds of internal coordinates are generally relatively small; however in 
a crystal, as in the zeolite framework, the force constants for bending and torsional 
coordinates are very large compared with those of free molecules and are compar- 
able to those of stretching coordinates, and hence lead to large couplings of the 
internal coordinates. As shown in Table 6, all the atomic motions, even including 
T - O - T  bending, have large force constants in the framework. The force constants 
of O - - - O  coordinates are also very large, between 2.8 to 4.4 mydne/A,  implying 
that the motions of oxygen atoms are restricted by the other neighbouring 
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Table 5. The internal coordinate force constants (in mdyne/A) 

Kyoung Tai No et al. 

Internal coordinate k 2 k I Used in 
Blackwell's 
calculation 

Empirically 
obtained 
in mullite 

kAl_O(1) 5.939 3.707 
kAi_O(2) 6.667 3.800 
kAl_O(3) 6.027 3.456 

ksi_o(l) 6.472 4.983 
ksi_o(2) 7.09 5.177 
ksi_o(3) 6.249 4.800 

kAl_O(3)_si 1.564 -- 0.090 
kAl_O(1)_Si 1.634 -- 0.080 

ko(3)_Al_O(3) 3.571 0.670 
ko(3)_Al_O(2) 3.478 2.083 
ko(3)_Al_O(1) 3.613 1.150 
ko(2)_Al_O(l) 3.483 1.123 

ko(3)_si_o(3) 2.504 0.051 
ko(3)_si_o(2) 2.434 0.731 
ko(3)-si-o( 1 ) 2.539 2.821 
ko(2)_si_o(1) 2.430 2.692 
kT_O_T_ o 2.269 0.042 c 

ko0)___o(2) 4.438 0.043 
koo)___o(3) 2.834 0.024 
ko(2)___o(3) 4.308 0.050 
ko(3)___o(3) 2.770 0.024 

3.292 a 
3.183 a 
3.024 a 

4.975 a 
5.417 a 
5.053 a 

4.75 b 

5.2 b 

0.084 c 

0.825 b 
0.836 b 
0.833 b 
0.845 b 

0.389 b 
0.393 b 
0.391 b 
0.395 b 
0.042 c 

a Calculated from BLSF-BR, k~_~o [6] 
b Obtained empirically from the IR spectra of Mullite, kM_T_O and kr~T-O-T [15] 
c Obtained from [14] 

n o n - b o n d i n g  oxygen atoms. Since the force constants  cor responding  to T - O - T ,  
O - A I - O ,  O - S i - O ,  and  O - T - O - T  mot ions  do not  differ much in magni tude ,  most  

of the normal  vibrat ions  lower than  800 cm -1 are combina t iona l  mot ions  of these 
coordinates.  Therefore,  with few exceptions,  the vibrat ional  mot ion  in this region 

can ' t  be characterized by an  internal  coordinate  motion.  For this reason,  the 

normal  modes were classified into the characteristic and  coupled modes in our  

previous paper.  The stretching force constants  of A1-O bonds ,  calculated with 
kAy_O, are larger than  those obta ined  from BLSF-  the potent ia l  energy funct ion,  q 

k BB �9 however  ksqi_oS are smaller  than  BR, BLSF field based on Badger 's  rule, A1-O, 
k B~si-os. Except  for A1-O bonds  the force constants  ob ta ined  from potent ia l  energy 
funct ions  do not  so much  deviate from those obta ined  from empirical ly or 
exper imental ly  obta ined  force constants.  Since the A-type zeolite f ramework is 
composed of a l ternat ing AI -O and  Si-O bonds ,  and  both Si and  AI are tetrahe- 
drally coordinated  by oxygen atoms, the b o n d  character of  the AI -O bonds  is 
quite different from that  of a lumina.  

I f  the force constant  set k ' is used, where {S} forms an or thogonal  coordinate  
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set, then the coordinates used for the description of vibrational motion and those 
used for the total energy expression in Eqs. (12) and (18) or (20), are the same 
internal coordinate set. Among 212 q coordinates, 16 AI-O, 16 Si-O, 12 T-O-T,  
48 O-T-O,  72 T-O-T-O,  and 48 O - - - O  internal coordinates, in the pseudo-lattice 
method, 3 N - 3 (69 in our model) orthogonal internal coordinates can be selected. 
In the selection of {S} from {q}, the symmetric restrictions of the model must be 
considered. 

Using the Aims,  the IR absorption band were assigned to the internal coordinates, 
and the results are summarized in Table 6 together with the previous assignments. 

The potential energy functions used in this study may be physically meaningful 
because the crystal structures can be obtained with these potential functions 
[16-19] and the calculated vibrational frequencies arising from them agree well 
with experimental data. The non-bonding potential parameters of O - - O  and 
O - - N a  are very important for the determination of the crystal structure and the 
dynamic properties, i.e. the diffusion [20] of Na ion in the framework and the 
vibrational motions of framework [8]. 

Conclusion 

For the normal mode analysis, the force constants obtained from the potential 
energy function, k q, must be converted to the k x in Eq. (14) or to k s in Eq. (16). 
Using the additivity of the potential energy function, the kS's can be obtained 
from Eq. (19). The vibrational motions, {Q}, must be described by {S} or {X}. 
The expansion of {Q} in terms of {X} can easily be converted into the expansion 
of  {S} using projection operators and solving linear equations. Since the empirical 
force constants were selected to ensure that the theoretical number of IR active 
frequencies calculated with the force constants was compatible with the observed 
spectrum, the force constant set could be either k q or k'. Hence, conversions 
between k q and k s, or k q and k x, or k s and k x may be useful. 
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